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COMPUTATION OF GAUSS-KRONROD QUADRATURE RULES 

D. CALVETTI, G. H. GOLUB, W. B. GRAGG, AND L. REICHEL 

ABSTRACT. Recently Laurie presented a new algorithm for the computation 
of (2n + 1)-point Gauss-Kronrod quadrature rules with real nodes and positive 
weights. This algorithm first determines a symmetric tridiagonal matrix of or- 
der 2n + 1 from certain mixed moments, and then computes a partial spectral 
factorization. We describe a new algorithm that does not require the entries of 
the tridiagonal matrix to be determined, and thereby avoids computations that 
can be sensitive to perturbations. Our algorithm uses the consolidation phase 
of a divide-and-conquer algorithm for the symmetric tridiagonal eigenprob- 
lem. We also discuss how the algorithm can be applied to compute Kronrod 
extensions of Gauss-Radau and Gauss-Lobatto quadrature rules. Throughout 
the paper we emphasize how the structure of the algorithm makes efficient 
implementation on parallel computers possible. Numerical examples illustrate 
the performance of the algorithm. 

1. INTRODUCTION 

Let dw be a nonnegative measure on the real interval [a,b] with an infinite 
number of points of increase, and such that the moments 1Uk :f xkdw(x), k = 
0,1, 2,... , exist and are bounded. For notational convenience, we assume that 
-to = 1. An n-point Gauss quadrature rule for the integral 

rb 

(1 . 1) ITf j f(x)dw(x) 

is a formula of the form 
n 

(1.2) gnf = f (Xk)Wk 
k=1 

with the nodes a < x1 < X2 < ... < Xn < b and positive weights Wk chosen so that 

(1.3) gnf = If Vf E P2n-1 
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Here and throughout this paper PRj denotes the set of polynomials of degree at most 
j. The associated Gauss-Kronrod quadrature rule 

2n+1 

(1.4) C2n+lf f E (k*vk 
k=1 

has the properties that 

(1.5) {Xk}j=1 C {Xk}j2+ 

and 

(1.6) K2n+lf = If Vf E P3n+l 

We present a new algorithm for the computation of Gauss-Kronrod quadrature 
rules with real nodes and positive weights when such rules exist. Our algorithm 
is based on recent results by Laurie [12] on properties of symmetric tridiagona! 
matrices associated with Gauss-Kronrod rules. 

In typical applications of Gauss-Kronrod quadrature rules, both 5nf and K2n+lf 
are evaluated, and this pair of approximations of If is used to estimate the error in 
gnf. Applications in adaptive quadrature routines can be computationally demand- 
ing, and therefore it is important to develop accurate and fast algorithms that are 
well suited for implementation on a parallel computer for the computation of nodes 
and weights of Gauss-Kronrod rules; see [4, 8, 15] for recent discussions. Surveys of 
properties of Gauss-Kronrod quadrature rules are presented by Gautschi [7], Laurie 
[12] and Monegato [14]; see also Golub and Kautsky [9] for related discussions. 

Let {pj }J? 0 be a sequence of monic orthogonal polynomials with respect to the 
inner product 

b 

(1.7) (f,g) j (x)g(x)dw(x), 

i.e., 

(1.8) (Pj,Pk)=0, jfk. 

The pj satisfy the recursion relations 

(1.9) Pk+1(X) (x-ak)Pk(X) -b 2pk - 1(X), k = 1,2,... 
pi(x) x - ao, po(x) 1, 

with coefficients 

(1.10) ak (Pk, XPk) k - ,1, 1 
(Pk, Pk) 

(1.11) b2 (Pk,Pk) k=1,2. 

(Pk-1,Pk-1)' 

Note that (po,po) = -o = 1. It follows from (1:11) that 

(1.12) (Pk,Pk) = b2b . 
2 

-b2, k > 1. 

Define the positive quantities bk := (b 2)1/2, k > 1. We refer to the ak and bk as 
recursion coefficients for the family of orthogonal polynomials (1.9). The 2n - 1 
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coefficients 
{ak}-1_ 

and {bk}l4- determine the symmetric tridiagonal matrix 

aO bi 
bi a, b2 

(1.13) Tn. . . E Rnxn 

bn-2 an-2 bn-1 

bn-1 an-i 

with spectral factorization 

(1.14) 

Tn = WnAnWn An = diag[Al, A2,... An], WnWn = I. 

Due to the positivity of the off-diagonal entries bk, the eigenvalues Aj are distinct 
and all entries of the first row of Wn are nonvanishing. Moreover, it is well known 
that the nodes and weights of the Gauss rule (1.2) are given by 

(1.15) { xj (WAj, I2, < j < n, 

where ej denotes the jth axis vector; see, e.g., [10]. We refer to the sets of 
eigenvalues and first or last components of normalized eigenvectors of a matrix 
as partial spectral resolution of the matrix. The sets {Aj}j>=1 U {e"'Wnej}j>1 and 

{Aj}j>=1 U {e"'Wnej }>1 are partial spectral resolutions of Tn. We will assume that 
the recursion coefficients aj and bj are available. The nodes and weights (1.15) 
of the Gauss rule can then be computed in (9(n2) arithmetic operations by the 
Golub-Welsch algorithm [10]. 

Our algorithm for the computation of the nodes and weights of the Gauss- 
Kronrod rule (1.4) requires that the last entries of the normalized eigenvectors 
of Tn also be available. These can be computed.simultaneously with the Gauss 
weights by modifying the Golub-Welsch algorithm in a straightforward manner. 
The operation count for the modified algorithm is also (9(n2). The eigenvalues 
and first and last components of normalized eigenvectors can also conveniently be 
determined by one of the divide-and-conquer algorithms for the symmetric tridi- 
agonal eigenproblem presented by Borges and Gragg [3] or Gu and Eisenstat [11]. 
These algorithms also require (9(n2) arithmetic operations, and with n processors 
the computations can be carried out in (9(n) time steps. 

Laurie [12] pointed out that if the Gauss-Kronrod rule (1.4) has distinct real 
nodes {Xk}4tn1+ and positive weights {Vk}2n+1' then there is an associated sym- 
metric tridiagonal matrix 

(1.16) 

bi a, b2 

T2n+1 =R.. ... .. ;l (2n+l)x(2n+l) 

b2n- 1 d2n- 1 b2n 

b2n a2n J 

with spectral factorization 

T2n+1 = W2n+lA2n+lW2 n+l, A2n+1 = diag[Al,A2, A2n+1i], W2n+1W2n41 = IX 
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such that 

(1.17) I = 1 ?i < 2nI+ 1, 

analogously to (1.15). We refer to the matrix (1.16) as the Gauss-Kronrod matrix. 
Let the nodes be ordered according to xl < 2 < ... < x2n+1l Monegato [13] 
showed that the positivity of the weights Wk associated with nodes ik j = is 
equivalent with the interlacing property 

XI < X2 = X1 < X3 < X4 = X2 < X5 < ... < X2n = Xn < X2n+1I 

Proposition 1.1 (Laurie [12]). Let Tn and Tn denote the leading and trailing n x 
n principal submatrices of T2n+l, respectively. Then Tn and Tn have the same 
eigenvalues. Moreover, for n odd, 

(1.18) aj-l = aj1, bj = bj, 1 < j < 2 + 1 

and, for n even, 

(1.19) f aj-a3, 0 < < 3j< 

Proof. Formulas (1.18) and (1.19) express that the first 3n + 1 coefficients of the 
matrices T2n+l and T2n+l agree. This result follows immediately from (1.6). In 
particular, Tn = Tn. This observation and the fact that {Aj}j> c {Cjj}2l2+l 

implies that Tn and Tn have the same spectrum, as can be seen by expanding 
det(T2n+l - AI) along the (n + I)st row; see [12] for details. 

It follows from Proposition 1.1 that the existence of a Gauss-Kronrod quadrature 
rule with real distinct nodes and positive weighfs is equivalent to the existence of 
a real solution to the following inverse eigenvalue problem. 

Corollary 1.2. Let the first n-I entries of the 'n x n symmetric tridiagonal matrix 

d n+ I bn+2 

bn+2 an+2 bn+3 

(1.20) Tn 

b2n-1 a2n- I b2n 

b2n a2n 

be determined by (1.18) when n is odd, and by (1.19) when n is even. Let the 
eigenvalues of Tn be the eigenvalues of the matrix (1.13). There is a real symmetric 
tridiagonal matrix Tn with these properties if and only if there is a (2n + 1)-point 
Gauss-Kronrod quadrature rule (1.4) with real nodes and positive weights. 

Example 1.1. Let n = 1. The entries {ij}>I=O and {b3}=1 of the Gauss-Kronrod 
matrix T3 are recursion coefficients for the orthogonal polynomials associated with 
the measure dw. The entry marked by * is not explicitly known, 

[1 & d 1 T3:= b1 al b2 
L b2 * J 

However, by Proposition 1.1, a2 = &o. In particular, any 3-point Gauss-Kronrod 
rule associated with a 1-point Gauss rule has real nodes and positive weights. O 
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Example 1.2. Let n = 2. The entries _djj3=o and _bjj3=, of the Gauss-Kronrod 
matrix T5 are recursion coefficients for orthogonal polynomials associated with the 
measure dw, but the entries marked by * are not explicitly known, 

ao bi 
b- a, b2 

(1.21) T5 62 a2 63 

b3 a3 * 
L j~* 

By Proposition 1.1 the leading and trailing principal 2 x 2 submatrices of T5 have 
the same trace. This yields the equation 

(1.22) &O + l1 = d3 + ?4 

for a4. The determinants of the leading and trailing principal 2 x 2 submatrices are 
also the same, and this gives the equation 

(1.23) a&o& -I = a3a4 -4 

for b4. When (1.23) is satisfied by a real positive value of b4, a Gauss-Kronrod rule 
with real nodes and positive weights exists. a 
Example 1.3. Let [a, b] [-1, 1] and dw(x) : (1- x2)1/2dx. Then the Gauss- 
Kronrod matrix (1.21) has the known entries 

0 1/2 
1/2 0 1/2 

T5 = 1/2 0 1/2 
1/2 0- * 

Equations (1.22) and (1.23) yield a4 = 0 and b4.= 1/2. The eigenvalues and 
eigenvectors of this matrix are explicitly known, and we obtain the 5-point Gauss- 
Kronrod rule 

xk=cos(-k), wk=-sin (-k) 1<k<5. 
6 3 6' 

This paper describes a new algorithm for computing Gauss-Kronrod quadrature 
rules with real nodes and positive weights. The algorithm first determines the 
eigenvalues as well as the first and last components of normalized eigenvectors of 
the matrix Tn. This yields, in particular, the Gauss quadrature rule (1.15). The 
algorithm then proceeds by computing the first components of normalized eigen- 
vectors of the matrix Tn defined in Proposition 1.1. This is described in Section 2. 
When n is even, we use a method proposed by Boley and Golub [2]. For n odd, 
we apply a closely related method. We remark that our algorithm does not ex- 
plicitly determine the tridiagonal matrix (1.20). After these initial calculations, 
a consolidation step of the divide-and-conquer algorithm presented by Borges and 
Gragg [3] is used to determine the eigenvalues and first components of normal- 
ized eigenvectors of the matrix (1.16), and by (1.17) we obtain the Gauss-Kronrod 
rule. Relevant details of the divide-and-conquer method are discussed in Section 3. 
Our algorithm determines the (2n + 1)-point Gauss-Kronrod rule (1.17) from the 
recursion coefficients aj and bj in only (0(n2) arithmetic operations, and with n 
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processors only (9(n) time steps are required. Section 4 describes how the algo- 
rithm of Section 3 can be applied to the computation of Gauss-Kronrod-Radau and 
Gauss-Kronrod-Lobatto rules. These rules are Kronrod extensions of Gauss-Radau 
and Gauss-Lobatto rules, respectively, and find application in adaptive composite 
quadrature rules. Section 5 contains numerical examples. 

When only the measure dw but not the recursion coefficients aj and bj are 
available, the latter can be computed by (1.10) and (1.11). It may be attractive 
to evaluate necessary inner products by a Clenshaw-Curtis quadrature rule; see 
Gautschi [6] for a discussion. 

Laurie [12] presented another algorithm for the computation of (2n + 1)-point 
Gauss-Kronrod rules in (9(n2) arithmetic operations. This algorithm first deter- 
mines certain mixed moments from which the symmetric tridiagonal matrix (1.16) 
is determined. The Gauss-Kronrod nodes and weights are then determined by 
applying the Golub-Welsch algorithm to the matrix (1.16). 

Our algorithm avoids the explicit determination of the matrix (1.16). Experience 
from related problems indicates that the computation of the entries of T2n+i can 
be sensitive to round-off errors; see, e.g., [5]. 

2. COMPUTATION OF EIGENVECTOR COMPONENTS OF Tn 

We consider the determination of the first components of normalized eigenvectors 
of the real symmetric tridiagonal matrix (1.20), which is the trailing principal n x n 
submatrix of the Gauss-Kronrod matrix (1.16). The n - 1 first entries of Tn are 
given by (1.18) or (1.19). The remaining diagonal and subdiagonal matrix entries 
are not known. The matrix (1.20) is required to, have the same eigenvalues A1 < 
A2 < ... < A, as Tn. We assume for the moment that such a real symmetric 
tridiagonal matrix Tn with positive subdiagonal elements exists. 

We first outline a method due to Boley and Golub [2] that can be applied when 
n is even. A modification of this method, described below, can be used for n odd. 

Recall that the matrix Tn is associated with a positive measure dw with support 
in a real interval [a, b] and with the quadrature rule (1.15). Similarly, we may 
associate with the matrix Tn a nonnegative measure dw with support in a real 

interval [a, b] and such that fja dw(x) = 1. The eigenvalues Aj and squares of the 
first components of normalized eigenvectors w; define a quadrature rule {Aj, Wj J=1 

associated with the matrix Tn, such that 

rb n 

(2-1)~ ~ ~ ~~d 
k 

E 
- 
i 0 < k < n. (2.1) IxdWZA~j O<jn 

j=1 

We remark that we may choose dwz to be the discrete measure defined by the 
quadrature rule {Aj,wj}1n= . 

Let n be even. Then the entries of the leading principal submatrix Tn/2 E 

Rn/2xn/2 are explicitly known. Let {x*, wj* In/2 be the Gauss quadrature rule asso- 

ciated with the matrix Tn/2, i.e., the x* are eigenvalues and the w* are the square 
of the first components of normalized eigenvectors of Tn/2; cf. (1.15). Both quad- 
rature rules {x>,wj*}bl and {A=Wj} j=1 can be regarded as discretizations of the 
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measure dw'. Thus, 

b n/2 n 

(2.2) ]xkdWt (x) = *)k = ZE A jk 0 < k < n. 
j=l j=l 

The equations (2.2) can be expressed in terms of the Lagrange polynomials 
n A- 

(2.3) ek(x) := fl A A H 1 < k < n, 

and we obtain 
n/2 n 

(2.4) Zek(x;)w; = Zk%)w; = AIk, 1 < k < n. 
j=1 j=1 

We remark that the equations (2.2) can be formulated as a linear system of equa- 
tions with a Vandermonde matrix for the weights w;. Numerical experiments re- 
ported in [5] indicate that the weights w;j are computed more accurately by formula 
(2.4). 

We assumed above that a real symmetric tridiagonal matrix Tn with positive sub- 
diagonal elements, with given spectrum {Aj }>j=1 and with a given leading n/2 x n/2 
principal submatrix exists. However, this is not always the case. For instance, when 
dw(x) = e-xdx and [a, b] = [0, oo], the matrix Tn is for many values of n complex 
symmetric, with real diagonal entries and at least one purely imaginary subdiago- 
nal element. The measure dwi associated with such a matrix Tn is indefinite, and 
at least one weight w; is negative. A numerical method for computing complex 
symmetric tridiagonal matrices of even order n with real diagonal entries and real 
or purely imaginary subdiagonal entries, given its real distinct eigenvalues and its 
real symmetric tridiagonal leading principal submatrix of order n/2, is described in 
[5]. 

The present paper is concerned with the computation of Gauss-Kronrod rules 
with distinct real nodes and positive weights, and by Corollary 1.2 we may restrict 
our attention to real symmetric tridiagonal matrices Tn with positive subdiagonal 
entries. In particular, we are only concerned with the case when the weights w;j are 
positive. 

When n is odd, the algorithm described above has to be modified. The entries 

{ai}j=n+1 and {b3n}j=2n+l)/2 of Tn are known. The largest leading k x k principal 
submatrix of Tn with all entries explicitly known is of order k = (n - 1)/2, and the 
Gauss rule associated with this submatrix is not of high enough order to allow the 
matching of n moments, analogously to (2.2). Therefore a formula similar to (2.4) 
cannot be applied before some preliminary calculations have been carried out. 

The computations are divided into two steps. First we compute the diagonal 
entry a(3n+l)/2. Then the leading principal submatrix of order (n + 1)/2 of Tn is 
known, and we can compute the weights w; by a formula analogous to (2.4). 

Let {py}(n=l)/2 be the first (n + 1)/2 monic orthogonal polynomials associated 
with the inner product 
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These polynomials can be computed from the available recursion coefficients. The 
desired diagonal entry of Tn is given by 

(P-(n-1 )/2i -TP(n-1 )/2 ) 
ai(3n+l)/2 -= 

a(3n+l)2(P-(n-l)/2iP(n-l)/2) 

where 
(PI(n-l)/2tP(n-l)/2) = b(3n+l)/2b(3n-l)/2 ... bn+2 

Note that 
n 

(2.5) n(X) = fi(x - Aj) 
j=1 

and that x -2n 1)/2(x) -n(x) E lPn-l. The latter polynomial can be written as 

(2.6) 
(n-1)/2 (n-3)/2 

XP(n_1)12(X) 
- n(X) = X(ni)/2(x) E C(n-l)/2+jPj(X) + Z cPjp(x) 

j=o j=o 

for certain coefficients Ck. Integrating (2.6) and using the orthogonality of the 
polynomials pj yields 

(n-1)/2 (n-3)/2 

)/2) = (P(n-l)/2 C(n-l)/2+j Pj) + ( j Cj PO) 

j=O j=O 

= Cn-1 (P(n-l)/2,iP(n-1)/2) + co(io,kpo), 

and therefore 
CO 

(2.7) &(3n+l)/2 
= Cn-l + b2 b2 ... 

(3n+1)/2 (3n-1)/2 n+2 

It remains to determine the coefficients cn-, and co. Note that cn_i is the leading 
coefficient of the polynomial xi2 L n)/2 (x)-j(x) in power form. Straightforward 
expansion in terms of powers of x yields 

/(3n-l)/2\ 

xp( Xl)/2() = - 2 ( ) j } xn-1 + o(xn-2) 
j=n+l / 

and 

Pn()= - (E ) x1 + ((x ) 

Therefore 
/ n (3n-1)/2 

x -2 
-i5ijx)XnA3-2+ o((Xn2). XP(n-l)/2(X) - Pn(X) =|EA,j -2 E x +C( ) 

\j=1 j=n+l 

Comparison with (2.6) shows that 

n (3n-1)/2 

(2.8) cn-1 =Z Aj - 2 E &j. 
j=1 j=n+l 

We turn to the computation of the coefficient co. Determine the Gauss quadra- 
ture rule {x;, w;}SIin=l)/2 associated with the leading principal n- 1 x n-1 submatrix 
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of T, all of whose entries are known. We then apply this quadrature rule to the 
right-hand side and left-hand side of (2.6) to obtain 

(n-1)/2 

(2.9) CO = - E Pn(Xj)Wj 
j=1 

where Pn is given by (2.5). In the derivation of (2.9), we have used that the nodes 
are the zeros of P(n-1)/2, and that by orthogonality 

(n-1)/2 n-3 

5 Pk(X*)W*=O, ?<k< 2< 
j=1 

Thus, we can evaluate the coefficient a(3n+l)/2 by using formulas (2.7)-(2.9). 
The leading principal n+1 x n+1 submatrix of Tn is now explicitly known, and 

we can determine the weights Wj analogously as when n is even. Thus, compute 
the Gauss rule {X, IW}Wjn+l)/2 associated with the leading principal submatrix of 

Tn of order (n + 1)/2. Analogously to (2.2), we obtain 

b (n+l)/2 n 
J kdW(x) , (x )kW = k, O? < k < n, 

j=1 j=1 

which, similarly to (2.4), yields the formula for the weights 

(n+l)/2 

Wk= ek(X)W, 1 < k < n, 
j=1 

where the Lagrange polynomials ek are given by (2.3). 
The computations described in this section require (9(n2) arithmetic operations 

and can be carried out in (9(n) time steps by n processors when a divide-and- 
conquer method is used for computing the required quadrature rules. 

3. COMPUTATION OF GAUSS-KRONROD RULES 

We assume in this section that the eigenvalues and the last components of nor- 
malized eigenvectors of the matrix Tn, as well as the first components {'I-1/2}>n of 
normalized eigenvectors of the matrix Tn, are available. The computation of these 
quantities is discussed in the previous sections. Recall that the matrices Tn and 
Tn have the same eigenvalues. We are now in a position to apply the consolidation 
phase of the divide-and-conquer algorithm described in [3] to determine the eigen- 
values and first components of normalized eigenvectors of T2n+l. The associated 
Gauss-Kronrod rule is then obtained from (1.17). 

The Gauss-Kronrod matrix (1.16) can be written as 

Tn enbn 

(3.1) T2n+l n en a bn+jej ] 
eibn+l Tn 

The matrix Tn has the spectral factorization 

Tn = WnAnWn" WnWnT =I, 



1044 D. CALVETTI, G. H. GOLUB, W. B. GRAGG, AND L. REICHEL 

where An is defined by (1.14). Introduce 

Wn 

U := 1 E R(2n+1)x(2n+1) 

L Wn 

Then 

An-XAI WnTenbn 
(3.2) UT(t2n+l -AI)U = bnennWn - A bn+lelWn . 

WTelbn+ An- AI 

Note that the entries of the vectors enWn and el Wn are known. The matrix on 
the right-hand side is the sum of a diagonal matrix and a Swiss cross 

x ~~~~~~x 
x ~~~~~x 

U T(t2n+l- AI)O [ x ] L x ] 

iixxxx 
which we permute to an arrow matrix by a similarity transformation with the per- 
mutation matrix p(n+l) = [el, e2, ... I en, en+2, * *e2n,jen+l] E R(2n+1)x(2n+1). 

Thus, 

(p(n+f1 l))TUT(T2n+21 
- AI) UP(n') 

(3.3) 
[ An Wn'enbn 

= ~~ ~~~An Wn' elbn+l -AI . 
- bnenWn bn+lel Wn anb i 

We apply rotation similarity transformations to row%s j and j+rn, for j = 1, 2,.. ., n, 
in order to annihilate the first n entries of row and column 2n + 1. This process is 
sometimes referred to as combo-deflation and yields 

(3.4) 
An 

GT(P(n+l))T(UT (T2n+ - AI) UP(pn+ 1')G = An c AI 
CT an l 

where the matrix G z R(2n+l)x(2n+l) is made up of the product of the n rotations 
applied to the matrix (3.3) from the right, and the vector c = [yi, y2,1 . , y~n] E in 
consists of the entries in positions n + 1 through 2n of the vector 

(G [bnen Wn, bn+ 1 e 1Wn, an]D) 

The right-hand side of (3.4) shows that the matrix T2n+l has the diagonal entries 
of An as eigenvalues, and these are the nodes of the Gauss rule (1.2). Thus, the 
computed nodes of the Gauss and Gauss-Kronrod quadrature rules satisfy (1.5). 

The remaining n + 1 eigenvalues of T2n+1 are eigenvalues of the trailing principal 
(n + 1) x (n + 1) submatrix of the matrix (3.4), which for A f {xj}j>= can be 
factored according to 
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where f is the spectral function 
n 2 

(3.5) f (A) := A-an+Z -A 

The n + 1 distinct zeros of f are the Gauss-Kronrod nodes {x2j-l }7+l, and they 
interlace the Gauss nodes {xj}j>= . A zero finder that yields sequences of cubically 
and monotonically convergent approximations of the zeros of f is described in [3]. 
The computation of the eigenvalues requires (9(n2) arithmetic operations. Given 
the eigenvalues of T2n+l, the first components of normalized eigenvectors also can 
be determined in (9(n2) arithmetic operations; see [3] for details. These components 
are computed by an approach suggested by Gu and Eisenstat; see [11] and references 
therein. Only (9(n) time steps are required when n processors are available. 

The computations required to compute an n-point Gauss quadrature rule and 
the associated (2n + 1)-point Gauss-Kronrod rule are summarized in the following 
algorithm. 

Algorithm 1. Computation of Gauss and Gauss-Kronrod rules. 

* Input: n, first 3n + 1 recursion coefficients a0, bi, a1, b2,... for orthogonal 
polynomials associated with a positive measure dw scaled so that ,uo = 1. 

* Output: n-point Gauss rule {xj, wj I}>n= and associated (2n+ 1)-point Gauss- 
Kronrod rule {J,Wj} j 2n= 

* Compute eigenvalues as well as first and last components of normalized eigen- 
vectors of the tridiagonal matrix Tn. The eigenvalues and first components of 
the eigenvectors yield the Gauss quadrature rule {xj, wj}In= associated with 
the measure dw. 

* Compute weights {Wj }>j= of trailing n x n principal submatrix Tn as described 
in Section 2. 

* The entries of row and column n + 1 of the matrix T2n, the eigenvalues and 
last component of normalized eigenvectors of Tn and the square-root of the 
weights {I 

- 
J}>' are used to compute the Gauss-Kronrod rule {x,' w}~Cj2= by 

application of a consolidation step of a divide-and-conquer algorithm. D 

4. GENERALIZED GAUSS-KRONROD QUADRATURE RULES 

This section discusses the computation of Gauss-Kronrod rules with one or two 
preassigned nodes. We refer to these quadrature rules as Gauss-Kronrod-Radau and 
Gauss-Kronrod-Lobatto rules, respectively. Properties of these rules are discussed 
by Gautschi [7]. 

4.1. Gauss-Kronrod-Radau rules. Let dw be the nonnegative measure intro- 
duced in Section 1. An (n + 1)-point Gauss-Radau quadrature rule for the integral 
(1.1) with a fixed node at x = a is a formula of the form 

n 

(4.1) Gn+l,af Z f(Xk,a)Wk,a 
k=0 

with nodes a = X0,a < X1,a < * < Xn,a < b and positive weights Wk,a chosen so 
that 

Gn+l1,af =If Vf E P2n. 
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The associated Gauss-Kronrod-Radau quadrature rule 
2n+ 1 

(4.2) KC2n+2,af =E f (G4,a)'CVk,a 
k=O 

has the properties that 
{Xk,a}kO C {Xk,a}k= 

and 

(4.3) PC2n+2,af = 1f Vf E P3n+2 

In addition, we would like the weights '7k,a to be positive and the nodes 5k,a to 
satisfy a = XO,a < X1,a < ... < X2n+l,a. The "free" nodes {Xk,a}k-1 of the Gauss- 
Radau rule (4.1) are zeros of the nth degree orthogonal polynomial associated with 
the measure 

(4.4) dw'(x) (x - a)dw(x), a < x < b; 

see, e.g., [9]. Analogously, Gautschi [7] showed that the nodes {jk,a}i2jn1+ of the 
Gauss-Kronrod-Radau rule (4.2) are nodes of a (2n + 1)-point Gauss-Kronrod quad- 
rature rule 

2n+1 

(4.5) 2 = S ) Xk)/ 
k=1 

associated with the measure (4.4). We apply Algorithm 1 to compute the nodes V 
and weights WV of (4.5) and thereby the nodes Xk ,a of the Gauss-Kronrod-Radau 
rule (4.2). The following proposition shows how to compute the weights tC9k,a of 
(4.2) from the weights tW. 

Proposition 4.1. Let {4'7}j27n'+ be the weights of the Gauss-Kronrod quadrature 
rule (4.5) associated with the measure (4.4). The weights 'Jk,a of the (2n + 2)-point 
Gauss-Kronrod-Radau rule (4.2) associated with the measure dw are given by 

(4.6) Wk,a = I l < k < 2n+ 1, 
Xka' 

2n+1 

WO,a = [o - EWk,a. 
k=1 

Proof. Introduce the Lagrange polynomials 
2n+ 1 

4k (X) I Xk aHX 
j=1 Xk,a Xj,a 

and 
ek,a(X) (= )k(X)x a 

for 1 < k < 2n + 1. It follows from (4.3)-(4.5) that 
b 

Wk,a = K2n+2,aek,a = j ek,a(x)dw(x) 

b 

= I |etk (x) Wd (x) = 2n+ = - 
Xk,a - a J a a flo Xk,a - a 

for 1 < k < 2n + 1. The formula for iDVO,a follows from a d~~=f~d() 
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Algorithm 1 requires the first 3n + 1 recursion coefficients a', bl, al, ... for the 
orthogonal polynomials with respect to the measure (4.4). When dw is a measure 
of Jacobi-type 

(4.7) dw(x) := co(b - x)'(x - a))dx, a < x < b, a,,3 >-1, 

then so is dw', and explicit formulas for the recursion coefficients a', and b. are 
available; see, e.g., [16]. The scaling factor co, where 

(4.8) c-i := (b - a)+3+B(a + 1, 3 + 1) 

and B denotes the beta function, secures that tLO = 1. 
When dw is not of Jacobi-type and recursion coefficients aj and bj for orthogonal 

polynomials associated with the measure dw are available, a scheme by Golub and 
Kautsky [9] can be used to compute recursion coefficients a' and bj for orthogonal 
polynomials associated with the measure dw'. Let the symmetric tridiagonal matrix 
Tm E iRxr be defined by the first 2m -1 recursion coefficients aj and bj given by 
(1.10)-(1.11); cf. (1.13). Compute the Choleski factorization 

(4.9) Tm-aI=LmLm. 

Then the matrix 
(4.10) 

aO b, 
bl a/ b2 

TIM := . * . * .:=L Lm + aI + ymemem 
b-2 a-2 bm-1 

bl 1 a/ - 

where b2m b/(eTLmem)2, contains the first 2m - 1 recursion coefficients for 
orthogonal polynomials associated with the measure dw'; see [9, Theorem 3]. The 
coefficients a' and b' are used as input for Algorithm 1. 

4.2. Gauss-Kronrod-Lobatto rules. Let dw be the nonnegative measure intro- 
duced in Section 1. An (n+ 2)-point Gauss-Lobatto quadrature rule for the integral 
(1.1) with fixed nodes at x = a and x = b is a formula of the form 

n+1 

(4.11) Gn+2,a,bf E f(Xk,a,b)Wk,a,b 
k=O 

with nodes a = XO,a,b < Xl,a,b < ... < Xn,a,b < Xn+l,a,b = b and positive weights 
Wk,a,b chosen so that 

Gn+2,a,bf = If Vf E P2n+l1 

The associated Gauss-Kronrod-Lobatto quadrature rule 
2n+2 

(4.12) K2n+3,a,bf = 3 f(Jik,a,b)>ik,a,b 

k=O 

has the properties that 

{Xk,a,b }n+1 C {Xk,a,b }kn+ 1 

and 

(4.13) K2n+3,a,bf = If Vf E P3n+3 
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We would like the weights 6Vk,,a,b to be positive and the nodes Xk,a,b to satisfy 

a = XO,a,b < Xl,a,b < - < X2n+1,a,b < X2n+2,a,b = b. 

The "free" nodes {Xk,a,b}Vn=i of the Gauss-Lobatto rule (4.11) are zeros of the 
nth degree orthogonal polynomial associated with the measure 

(4.14) dw"(x) (b - x)(x - a)dw(x), a < x < b; 

see [9]. Analogously, Gautschi [7] shQwed that the nodes {Xk,a,b}kj= of the Gauss- 
Kronrod-Lobatto rule (4.12) are nodes of a (2n + 1)-point Gauss-Kronrod quadra- 
ture rule 

2n+ 1 

(4.15) IC2'TL?lf = S fG5xk,a,b)"i4c2 
k=1 

associated with the measure (4.14). We apply Algorithm 1 to compute the nodes 
Xk,a,b and weights tV4 of (4.15) and thereby the nodes of the Gauss-Kronrod-Lobatto 
rule (4.12). The following proposition shows how to compute the weights Zi9k,a,b of 
(4.12) from the weights t74. 

Proposition 4.2. Let {I'CVi2kn=+ be the weights of the Gauss-Kronrod quadrature 
rule (4.15) associated with the measure (4.14). The weights 'CDk,a,b of the (2n + 3)- 
point Gauss-Kronrod-Lobatto rule (4.12) associated with the measure dw are given 
by 

(4.16) Wk,a,b (Ik 
k Ia)(b-Xk,a,b) 1 < k < 2n + 1, 

(4.17) WO,a,b = b a (b[l0 - [ + ) k,a,b) (k,a,b-b) ) 
I 

(4.18) W2n12,a,b = b a (blo - 
a[l0 

- 5 Vk,a,b(Xk,a,b 
-b) 

I 
2n-4-1a) 

k=1 

Proof. Formula (4.16) can be shown similarly to (4.6). Integration of x - b by the 
rule (4.12) yields 

b 2n+ 1 

i- 1 - b,ao = (x - b)dw(x) = E Wk,a,b(Xk,a,b-b), 
k=O 

from which (4.17) follows. Similarly, (4.18) is obtained by integrating x - a. E 

Algorithm 1 requires the 3n + 1 first recursion coefficients a ', b'l, a/ ,. ... for the 
orthogonal polynomials with respect to the mea-sure (4.14). When dw is a measure 
of Jacobi-type (4.7), explicit formulas for these recursion coefficients are available. 
Otherwise, we can can determine the coefficients a" and b' from the matrix (4.10) 
as follows. Compute the Choleski factorization 

bI -T = L' (L' )T. 
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Then the matrix 

ao b,' 
bl a" bl 

bt' a l l a// bl 

b"2 a-2 bm-1 

b 1 a"1 

bI - (L' )TL' + aI + ' emeT, 

where A (bm)2/(emLmem)2, contains the first 2m - 1 recursion coefficients for 
orthogonal polynomials associated with the measure dw"; see Golub and Kautsky 
[9] for details. 

5. NUMERICAL EXAMPLES 

The computations were carried out on an HP 9000 workstation in double pre- 
cision arithmetic, i.e., with almost 16 significant digits, and in quadruple precision 
arithmetic. A Matlab implementation of our divide-and-conquer based algorithm 
is referred to as "d+c based alg." in the tables. This implementation uses double 
precision arithmetic and is compared to a Fortran implementation using double 
precision arithmetic of the algorithm presented by Laurie [12]. Laurie's algorithm 
is referred to as "mixed moment alg." in the tables. We used a QR algorithm from 
LAPACK [1] to compute the Gauss-Kronrod rule from the matrix (1.16) determined 
by Laurie's algorithm. A Fortran implementation in quadruple precision arithmetic 
of Laurie's algorithm and the QR algorithm were used to compute highly accurate 
Gauss-Kronrod quadrature rules. The nodes and weights computed in quadruple 
precision were considered exact, and were used to determine the error in the quadra- 
ture rules computed by our and Laurie's algorithms in double precision arithmetic. 

In our experiments we computed Gauss-Kronrod and Gauss-Kronrod-Radau 
quadrature rules associated with Jacobi measures 

(5.1) 
dw(x) := co(1-x)'(1 + x)Odx, -1 < x < 1, a,3 3> -1, 

where the scaling factor co, given by (4.8) with a = -1 and b = 1, is chosen to 
make po = 1. Recursion coefficients for the associated orthogonal polynomials are 
explicitly known; see, e.g., [16]. 

TABLE 5.1. Errors in computed Gauss-Kronrod weights 

d + c based alg. mixed moment based alg. 
n cl 3 max max max max 

I__ I____ _ I abs. error rel. error abs. error rel. error 

10 -0.20 -0.99 8.68 E-16 4.42 E-15 1.29 E-14 2.36 E-13 
10 -0.70 1.00 4.18 E-15 2.52 E-14 3.67 E-14 2.61 E-13 
15 -0.97 -0.97 3.24 E14 4.62 E-13 1.35 E-13 2.25 E-12 
15 -0.99 -0.50 1.20 E-14 2.16 E-13 1.56 E-13 2.81 E-12 
20 -0.60 -0.90 I 2.38 E-14 1.91 E-13 2.33 E-13 1.87 E-12 
20 -0.99 -0.90 4.59 E-15 4.19 E-13 1.21 E-13 2.36 E-12 
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TABLE 5.2. Errors in computed Gauss-Kronrod nodes 

d + c based alg. mixed moment based alg. 
n cl a max max max max 

abs. error rel. error abs. error rel. error 
10 -0.20 -0.99 5.86 E-16 4.65 E-15 2.50 E-15 2.50 E-15 
10 -0.70 1.00 5.46 E-16 7.71 E-15 5.45 E-15 5.65 E-15 
15 -0.97 -0.97 1.07 E-15 4.08 E-15 1.26 E-15 4.63 E-15 
15 -0.99 -0.50 7.12 E-16 4.74 E-15 4.59 E-15 1.75 E-14 
20 -0.60 -0.90 1.24 E-15 2.85 E-15 3.68 E-15 5.00 E-14 
20 -0.99 -0.90 1.83 E-15 1.66 E-14 3.64 E-15 2.36 E-14 

TABLE 5.3. Errors in computed Gauss-Kronrod-Radau weights, 
a =-0.99, = -0.9, fixed node at x = -1 

d + c based alg. mixed moment based alg. 
n max max max max 

abs. error rel. error , abs. error rel. error 
9 3.46 E-i5 6.35 E-14 8.12 E-14 1.46 E-12 

15 1.62 E-14 2.67 E-13 8.52 E-14 1.58 E-12 
21 1.42 E-14 6.22 E-13 2.86 E-13 5.40 E-12 

TABLE 5.4. Errors in computed Gauss-Kronrod-Radau nodes, a = 

-0.99, 3=-0.9, fixed node at x = -1 

d + c based alg. J| mixed fnoment based alg. 
n max max max max 

abs. error rel. error || abs. error | rel. error 
9 4.62 E-16 3.31 E-15 2.74 E-15 T 5.64 E-15 

15 9.89 E-16 1.30 E-14 2.95 E-15 8.63 E-15 
21 J] 2.27 E-15 1.08 E-14 4.76 E-15 4.76 E-15 

TABLE 5.5. Errors in computed Gauss-Kronrod rules, a = 

-0.9999, 3 = -0.5 

d + c based alg. mixed moment based alg. 
max e max er max e max e 

n abs. error abs. error abs. error abs. error 
__11 in weights in nodes in weights in nodes 

16 7.87 E-16 9.84 E-16 2.11 E-15 | 2.64 E-15 
32 3.52 E-15 1.07 E-15 1.28 E-14 1.15 E-15 
64 1.64 E-15 1.77 E-15 5.50 E-14 4.10 E-15 

128 3.80 E-14 2.18 E-15 2.12 E-13 2.43 E-15 
256 L 8.28 E-14 1.52 E-15 || 2.36 E-12 5.53 E-15 
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Our computational results can be summarized as follows. For many choices of a 
and 3 in (5.1) both Laurie's and our methods yield high accuracy. However, when 
at least one of the exponents in (5.1) is fairly close to -1, our method generally 
gives smaller errors. The higher accuracy in the computed weights achieved by the 
method of the present paper is particularly noteworthy. 

Tables 5.1 and 5.2 display the magnitudes of the largest absolute and relative 
errors in the computed Gauss-Kronrod nodes and weights. These errors are referred 
to as "max abs. error" and "max rel. error", respectively. We use the notation 
5.11E-14 for 5.11- 10-14. The examples in the tables illustrate the performance of 
the methods for a variety of choices of a and 3 for a few fairly small values of n. 
When a = 3, the Gauss-Kronrod rule has a node at the origin by symmetry. In 
the example with n = 15 and a = 3 = -0.97, we set the computed node closest to 
the origin to zero before computing absolute and relative errors of the nodes. 

Tables 5.3 and 5.4 show the errors in a few computed Gauss-Kronrod-Radau rules 
associated with the measure (5.1) and a fixed node at x = -1. These rules were 
computed by applying Algorithm I to the measure (4.4). Due to the scaling (zo = 1) 
assumed by the algorithm, it follows from (4.8) that the weights determined by 
Algorithm 1 have to be scaled by the factor s(a,/3) := 2B(1+a, 2+/3)/B(1+a, 1+/3) 
to yield the weights {I, }2n+l of the Gauss-Kronrod rule (4.5). These weights are 
required in (4.6) to determine the Gauss-Kronrod-Radau weights z79k,a. Table 5.3 
shows the errors in the computed weights {tTk,a},it1 for the Jacobi measure (5.1) 
with a = -0.99 and:? = -0.9. For these values of a and 3, we have s(a, 3) = 20/11. 
Table 5.4 shows the error in the computed nodes {Xk,a}lk=i. Finally, Table 5.5 
illustrates the performance of the methods for some large values of n. 

6. CONCLUSION 

The paper describes a new algorithm for the computation of Gauss-Kronrod 
quadrature rules and compares it to an algorithm recently proposed by Laurie. Both 
algorithms yield high accuracy for many problems. However, when an exponent in 
the Jacobi weight function (5.1) is close to -1, the algorithm of the present paper 
typically yields smaller errors. We also show how our algorithm can be applied to 
compute Kronrod extensions of Gauss-Radau and Gauss-Lobatto quadrature rules. 
The structure of the new algorithm makes efficient implementation in a parallel 
computing environment possible. This may be important in certain applications; 
see, e.g., [4, 8, 15]. 
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